Mechatronics and Robotics MSc

As a student here, you will experience research-based teaching and work alongside academics who are making discoveries and breakthroughs in your subject. You will study 180 credits in total during your Mechatronics and Robotics MSc(Eng). A standard module is typically worth 15 credits and the research project is worth 75 credits. These are the modules studied in 2017. If you are starting in September 2018, these will give you a flavour of the modules you are likely to study. All Modules are subject to change.

Compulsory modules

Industry dissertation - 15 credits
This module develops a detailed understanding of the global electronics industry. The topic of the dissertation is agreed with the module leader; examples include an essay on a particular aspect of the electronics industry, a proposal for research funding, a business plan and a manufacturing/ outsourcing plan.

Mechatronics and Robotics Applications - 15 credits
The creation of modern engineering systems requires the integration of components such as actuators, mechanisms, mechanical structures, sensors and computer control/electronics into a unified form. This process results in many challenges, problems and potential solutions.

Professional project - 75 credits
Involves independent research on a relevant topic agreed between you and your supervisor, throughout the second semester and the summer months.

Recent projects include:

  • Design and development of locomotion system of a humanoid robot
  • Design, simulation and development of a water pipe inspection robot
  • Design and development of a three finger robotic hand for use in Laparoscopic Surgery.

Optional modules

Bio-inspired Computing - 15 credits
This module deals with aspects of natural computing and conventional AI and how they complement each other; algorithms based on cooperative behaviour of distributed systems with no, or little central control; design and application of simple genetic algorithms; the relation between artificial neural networks and statistical learning; how the fields of artificial neural networks and computational and cognitive neuroscience inform each other; and recent research on bio-inspired computing.

Power Electronics and Drives - 15 credits
This module covers modern power semiconductor switching devices, their characteristics and fields of use, and to explain their switching and thermal behaviour; switch-mode power supplies with transformer isolation and power electronic control principles for renewable energy sources.

FPGA Design for System-on-Chip - 15 credits
Provides an understanding of the principles of the design of digital signal processing systems for VLSI technologies. You will gain a detailed knowledge of digital design techniques for silicon chip technologies in the sub-100nm scale, understand the fundamentals of implementing complex systems on a single chip, and be able to use contemporary EDA design tools to design practical examples.

Electric Drives - 15 credits
This module covers classic electric machines, equivalent circuit representatives for modelling the drive characteristics, and the principal methods of control in variable speed drive systems.

Control Systems Design - 15 credits
This module covers the analysis and design of control systems. Students’ knowledge and understanding of linear systems is developed to enable them to analyse control systems using analytical techniques and computer tools.

Automotive Driveline Engineering - 15 credits
This module covers: the components and systems which combine to produce a modern automotive drivetrain together with the associated technology, and the principles of engineering science to the design and analysis of the above systems and components.

Engineering Computational Methods - 15 credits
The module introduces students to the basic computational methods used to solve engineering problems modelled by ordinary differential equations and parabolic or hyperbolic partial differential equations. They will also learn how to implement the learned methods in practice. Engineering simulation software packages rely on computational methods and a good understanding is crucial to knowledgeably use them.

Biomechatronics and Medical Robotics - 15 credits
Biomechatronics is the application of mechatronic engineering to human biology. The aim of this module is to provide an understanding of biomechatronic and medical robotic engineering systems challenges, solutions and analysis.

Medical Electronics and e-health - 15 credits
This module provides you with a knowledge and understanding of how electronics and communications technology is and could be used in medical applications and healthcare.

Embedded Microprocessor System Design - 15 credits

Gain an understanding into how algorithms are implemented in practice on a microprocessor within a System-on-chip environment. Learn how to Implement complex microprocessor based systems and embedded systems. Perform hardware debugging of microprocessor systems and understand the limitations and advantages of the system-on-chip architecture and associated ARM processor.  

Programming - 15 credits

Develops competence in computer programming, using both Matlab and c.

Software Development - 15 credits

Refreshes and enhances c programming skills, and develops further software engineering expertise via a software project in which you will use professional methodology and an alternative programming language. This module is only suitable for students who have good prior experience of c programming.